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A theoretical model of the electronic structure of the metal-to-ligand charge-transfer (m.l.c.t.), 
ligand-centred (I.c.) and metal-centred (m.c.) states of tris(di-imine)metal(ii), [MLJ2+ (M = Fe or 
Ru), is developed. The model contains only three adjustable parameters describing the first-order 
mixing of  metal and ligand wavefunctions. All the state matrix elements are simplified by  tensor 
operator techniques to reduced one-electron matrix elements, which are calculated numerically 
using Slater type orbitals. A quantitative prediction of  the absorption and circular dichroism spectra, 
including all spin-allowed m.l.c.t., I.c., and m.c. bands of [ML,I2+ is made, using a reasonable set 
of mixing parameters, which is in good agreement with the experimental results. 

There is a great interest to know the electronic structure of d6 
tris(a-di-imine) complexes in order to gain more detailed insight 
to their photophysical properties. A very stringent test for any 
model is the simultaneous explanation of the main features of 
the absorption and the circular dichroism (c.d.) spectra. The 
models proposed so far'-' have only been successful in the 
interpretation of the metal-to-ligand charge-transfer (m.1.c.t.) 
and ligand-centred bands (I.c.) of the absorption spectrum and 
the I.c. bands of the c.d. spectrum.6 A satisfactory description of 
the c.d. bands due to m.1.c.t. and metal-centred (m.c.) transitions 
is still lacking to our knowledge. The main reasons are as 
follows. (i) Recently Ferguson et al. ' published single-crystal 
c.d. spectra of these complexes, which allow an unambiguous 
assignment of the c.d. transitions. (ii) In order to calculate the 
rotational strength, both the electric and magnetic transition 
moments have to be known. These moments can be very 
different in origin and magnitude as exhibited by the m.1.c.t. 
transitions (see below). Hence the model has to include both 
mechanisms, one leading to electric dipole moments and one 
leading to large magnetic moments. (iii) There is no general 
agreement whether the calculation of rotational strength based 
on approximate wavefunctions should be based on the dipole 
velocity or the dipole length operator. Dipole velocity is known 
to guarantee origin-independent rotational strength, whereas 
experience shows that dipole length is in general successfully 
applied for the estimation of absolute values of electric dipole 
moments even from very crude wavefunctions.8 As we show in 
the Appendix, rotational power calculations based on electric 
dipole lengths are origin-independent also, provided that the 
symmetry of the system is sufficiently high so that the three 
directions of a Cartesian co-ordinate system span different 
components of different irreducible representations. This is the 
case for tris(x-di-imine) complexes. Hence there is no reason not 
to use the dipole length formalism for both calculations: the line 
and rotational strengths. 

Theoretical Model 
Calculution gf Line and Rotational Strengths.-The line 

strength of an optical transition is determined by its electrical 
transition dipole moment, equation ( l ) ,  where ( A (  and IB) 

are the determinantal wavefunctions of the ground and excited 
states respectively and 3 the co-ordinates of the ith electron. 
The c.d. intensities, i.e. the rotational strengths, are determined 

by the imaginary part of the scalar product of the electrical and 
magnetic transition dipole moments, equation (2), where the 

Rotational strength, R - (AICx(B)*(BI? x ViIA) (2) 

symbols used are the same as above and vi is the gradient 
operator acting on the co-ordinates of the ith electron. Using 
irreducible tensor operators these state matrix elements are 
easily related to one-electron matrix elements, equation (3). 

The left-hand side of equation (3) represents a reduced state 
matrix element of an operator U spanning the irreducible 
representationfof the point group D, between the closed shell 
(a" ' A l l  (ground state) and the singly excited singlet la"-l(fa) 
b(+b) 'r) (excited state). This reduced state matrix element is 
related to a one-electron reduced matrix element between the 
donor orbital of symmetry a and the acceptor orbital of 
symmetry b multiplied by a W-coefficient, given in ref. 9, and a 
factor including the dimensions of the irreducible represent- 
ations r and 6. The symbols used in equation (3) are those 
introduced by Griffith.g The calculation of the reduced matrix 
elements is given by the Wigner-Eckart theorem, equation (4), 

(4) 

where a, 6, andfare an irreducible representation of D,; X ,  p, 
and cp are their components. The symbol on the right-hand side 
of equation (4) is a V-coefficient, given in ref. 9. 

Molecular Orbital Diagram and Basis Functions.-Molecular 
orbital (m.0.) calculations (EHMO, MSXa, INDO, etc.) of 
[ML,]'+ (L = di-imine) have shown that the electronic 
transitions in the u.v.-visible region are due to transitions from 
the occupied orbitals to the unoccupied orbitals in the m.0. 
diagram in Figure 1 . 3 * ' o  Three types of transitions are possible: 
( i )  metal-to-ligand charge transfer (m.l.c.t.), i.e. tzY-m*; (ii) 
metal-centred (m.c.) or ligand-field transitions, tzl-+e,; (iii) 
ligand-centred (I.c.), n+n*; Rydberg transitions, e.g. 
nd+(n + l)p and n-+n*, have been omitted. They were 
included in a preliminary analysis but their contribution was 
found to be negligible. 
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Figure 1. Molecular orbital diagram of [M(bipy),]’+ (bipy = 2,2‘- 
bipyrid y 1) 

t 
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Figure 2. Co-ordinate systems of [M(bipy)J’+: (a) { - 1,1,1) direction is 
C, axis, (6) z axis is C, axis. The transformation (a) - (6) is obtained 
through the following rotation: 

The [ML3I2+ moiety has exact D, symmetry l 1  (see Figure 
2). Nevertheless a gross examination of the electronic structure 
reveals a close resemblance to octahedral symmetry, the 
trigonal splitting being small. In this latter symmetry, the metal 
t2g orbitals transform as a ,  and e. The three n* ligand orbitals 
(below) span a basis for an a2 and e representation. The three n 

ligand orbitals span a basis for a1 and e representation. Since 
only orbitals with the same symmetry label can interact, the 
following m.0. combinations are obtained: empty orbitals 
[equations (5a)l; occupied orbitals [equations (5b)l. The labels 

Table 1. Symmetry-adapted basis functions using the co-ordinates of 
Figure 2(a)t 

Ida E )  = -dxl - y l  

Id0 0) = dz2 

ldx E )  = V X *  + 
= (XA + X B  + XC)/J3 
= (2XA - X B  - XC)/J6 

= (WA + W B  + WC)J3 
= (2WA - W B  - WC) /J6  

I x  0) 
I n E )  = (XB - XC)/J2 
IT[* 
I x *  &) 

In* = (WB - WC)/J2 
t 0 and E denote the two components of the representation e, as 
obtained from an extended Huckel calculation of NH=CH-CH=NH 
using standard calculation parameters (Quantum Chemistry Program 
Exchange, no. 344). 

e(e,) = Ida) + Q+K*) 
e(n*) = In*) - b=ldn) 

u2(n*) = In*) 

in parentheses denote the dominant character of the m.0.s. The 
functions in I) are obtained by symmetry-adapted linear 
combination (s.a.1.c.) of atomic orbitals (a.0.s). They are defined 
in Table 1. The coefficients a, b, c, d, e , f ,  g are small mixing 
coefficients with b = e, c = 2d, g = c, a n d f =  d if first-order 
perturbation is used. Thus in our model only three independent 
parameters remain (a, b, and c )  which can be adjusted by trial 
and error. 

Numerical Evaluation of the Orbital Transition Moments- 
The calculation of these elements is lengthy and tedious. Thus 
we developed a computer program for their evaluation. The 
calculation flow chart is shown in the Scheme, where N is the 
number of a.0.s ‘p, in a s.a.1.c. w i  = C C , , C ~ , ~ ~  are theco-ordinates 
of the electron centred on atom A, and TB t_he co-orjinates of 
the same electron but centred on atom B; RA2nd R, %re the 
co-ordinates of atoms A and B respectively; D,, and Dij are 
the matrix elements of the electrical transcon dipok moment 
in the a.0. and s.a.1.c. basis respectively; M , ,  and Mi, are the 
matrix elements of the magnetic transition dipole moment in the 
a.0. and s.a.1.c. basis respectively. The a.0.s cp,(7) used in boxes 
1 and 2 of the Scheme are Slater type orbitals, defined as in 
equation (6). 

For the calculation of the integrals in boxes 1 and 2 (Scheme) 
the following relations have been used. 

Electrical dipole matrix elements. These were obtained using 
equation (7), leading to the one-centre integrals in equation (8), 
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:alculation of two -centre integrals 
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Calculation of one-centre integrals 

I 
I 

no 

I I Transformation to s.a.1.c. basis 

Scheme. 

, I‘ Ylm(n)* Y!,m,(n)* Y,M(R)*dR (9) s ~ W l W r ’ M  = 

where equation (9) applies and (nlm~ln’llm’(’) is the overlap 
integral between the two Slater type orbitals. The calculation 
of overlap integrals and C-coefficients is a standard quantum 
mechanical procedure and a detailed description of their 
evaluation is omitted here. For the two-centre integrals we have 

equation (lo),  where A and B represent the atoms on which the 
integration co-ordinates are centred. 

Gradient matrix elements. If V, = (d/dx,d/dy,i?/i?z) with p = 
1 ,  - 1 ,  0 respectively we obtain equation (11) for the non- 
vanishing one-centre integrals, and equation (12) for the two- 
centre integrals, where all the symbols are consistent with those 
above. 

Angular momentum matrix elements. The angular momentum 
operator 7 = 7 x acts only on the angular part of the 
wavefunction. The calculation of its matrix elements is well 
known. 
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Table 2. Reduced one-electron matrix elements (allufllb) of [MLJZt  

(ellu"~lle) = A 
II 4 e g )  ) I I e( f  2.)) 
P A  

Ru Fe Ru Fe 
0 0 0 0 

0 0 0 0 

0 0 - 0.073 1 - 0.0293 

- 
(e(eg)II j 0 0 2 2 

(4n)II j v 0.0379 -0.0157 0.0267 0.01 11 

- 
(e(h,)ll j v 2.00 2.00 1.41 1.41 - 

0 0 - 0.0304 -0.0127 - 
(e(n*)ll i j v 0.0335 0.0157 - 0.0236 -0.01 11 

Ru Fe 
0 
0 
0 
2 
0 

0 
0.0157 

-0.0157 

Ru 
0 

-2 
0 
0 
0 
0 

0 
- 0.02 10 

(elluella2) = c - 
Ilaz(n*)> - 

Ru Fe 
0 0 
0 0 
0.009 46 -0.ooO 721 
0 0 

0.877 0.851 
- 0.392 - 0.369 

-2.1 1 - 2.06 
- 0.005 37 - 0.007 57 

Ru 
0 

0.073 1 
0.0267 
0 
0.0300 
0.779 

- 0.0379 

-0.833 

Fe 
0 

-0.0157 
0.029 1 
0.01 11 
0 
0.0352 
0.738 

- 0.802 

Fe 
0 

-2 
0 
0 
0 
0 

0 

- 

- 0.0 134 

Ru 
0 
0.0378 
0 
0 

- 1.61 - 

0 
0.384 
0.8 10 

Fe 
0 
0.0157 
0 
0 
1.55 
0 
0.364 
0.770 

I1 e(n* 1 ) - 
Ru Fe 

0 0 
0.0335 0.01 57 
0.0304 0.0 127 

- 0.0236 -0.001 11 
- 0.779 -0.738 
-0.833 - 0.802 

0 0 
0.0264 0.0252 

Ru 
0 

- 0.0334 
-0.0210 

0 
0.348 

-0.810 
-2.1 

0 

Fe 
0 

- 0.01 57 
-0.0134 

0 
0.364 

-0.777 
- 2.06 

0 

I 

llQl(b.)) 
& 

Ru Fe 
0 0 

- 2.0 - 2.0 
0 0 

- 1.41 - 1.41 
- 0.073 1 - 0.293 

0.0267 0.01 11 
0.03 1 1 0.0127 

-0.01 11 - 0.0236 

I 

1101 (n)) 
& 

Ru Fe 
0 0 
0.0757 0.03 13 

- 0.073 1 - 0.0284 
0.0535 0.0222 
1.64 1.71 

- 0.0700 - 0.0570 
- 0.397 - 0.379 
- 0.834 - 0.730 

Table 3. State matrix elements? 

(al ' e 4 , ' ~  l~TJal ' e 'e* , '~  = (o,o,o) 
( a  2e4,1 A IYU 2e3e*,1 A 2)  = (o,o,J~A) 
(a,2e4,'AlIVla,Ze'e*,'EB) = (o,E,o) 
( a  2e4, A 1 via 'e3e*,' E E )  = (E,o,o) 
( a , 2 e 4 , 1 ~  , ~ ~ a , ~ e S a ~ * , ' ~ e >  = (o,c,o) 
(a12e4, 'AlJ~a,2e3a2*, 'E~) = (c,o,o) 
( a , 2 e 4 , ' A , I ~ a , ' e 4 e * , ' E 8 )  = (o,-D,o) 
( ~ , ~ e ~ , ' ~ , l ~ a ,  'e4e*,'E&) = (-  D,O,O) 
( a ,  'e4,'A 1 Val e4a,*,'A 2 )  = (o,o,B) 

t For A,B,C,D reduced matrix elements, see Table 2. 

State Transition Moments.-Using the computer program 
outlined in the previous section it is possible to  calculate 
immediately the orbital transition moments within the basis of 
symmetry adapted functions given in Table 1. Single-zeta Slater 
type orbitals are used for the ligand atoms and double-zeta ones 
for the metal ions. The values of the screening parameters are 
taken from Clementi and Roeti and the interatomic distances 
from X-ray data." Note that a co-ordinate transformation from 

the system in Figure 2(a) to that in Figure 2(6) is necessary in 
order to have the C ,  axis coinciding with the z axis, which is the 
convention for trigonal symmetry. The 'orbital' matrix elements 
are transformed according to equation (4) into the reduced 
matrix elements, which are compiled in Table 2. From these 
values, it can be immediately seen which interactions lead to the 
largest dipole length moments and which to  the largest 
magnetic moments. 

The largest dipole length moments are the so-called 'transfer 
terms'. These are only found for planar transition moments (e) 
and are the contributions which were considered in earlier 
descriptions using a charge-transfer model.5*' They are 
followed in size by the x+n* transition moments, which are ca. 
2-5 times smaller and have axial (a2 )  and planar (e) 
polarization. All other dipole length matrix elements are more 
than two orders of magnitude smaller. 

The largest reduced magnetic moment matrix elements are 
those connecting metal d orbitals. The next, about five times 
smaller, are the x+n* contributions. They are due to the three, 
helically arranged, localized x+x* transitions; another method 
of describing these contributions is the exciton theory.I4 Other 
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Table 4. Electrical and magnetic transition dipole moments of [Ru(bipy),]’ + ‘ and [Fe(bipy)J2 + *.’ 

CR ~(b ipy) ,  3’ + 

Transition 

A 2(a 1 4 0 2 )  -0.0430 + 0.0575~ 0.603~ 
A 2 ( . - 4  

(ground state 171 excited state) (ground state 17 x VI excited state) 

M.1.c.t. 

0,0289 - 1.102d + 0.1034bd + 0.0430be 

0.0095 - 0.392d - 2.11e 

-0.0334 - 1.178d + 0.0373e + 2.0b 
E(ai+e) 

E(e+e) -0.021 + 0.384d - 2.104 + 0.0216e -0.81d 

0.031 1 - 0.397~ + 0.07316~ 0.0236 + 0.834~ - 1.416 + 0.05356~ 
0.877d - 0.00537~ E(e- 1 

L.c.( x--*?K*) 
A 2(a 1 +u2) 0.557 + 0.0267f 
A 2(e-+c)  
E(u I --+el 
E(C-+Q2 ) -0.392 - 0.0095g 

- 1.102 - 0.0288g + 0.10346 
-0.397 - 0.031 If + 0.07316 

E(e-+e) 0.384 + 0.021g 

0.603 

0.834 - 0.0236f + 0.05356 + 1.416f 
0.8’;7 

- 1.178 + 0.0334g - 0.03786 - 2.06g 

- 0.8 1 

M .c.( A d )  

E(e-+e) 
A2(e-+e) 0.0288~ - 1 . 1 0 2 ~ ~  

E(u 1 + 4  0.031 la - 0 . 3 9 7 ~ ~  2.0 + 0.0236~ - 0.0757~ + 0 . 8 3 4 ~ ~  
0 .021~  + 0 . 3 8 4 ~ ~  - 2.lue -2.0 - 0.0378~ + 0.0334e - 0 . 8 1 ~ ~  

2.83 - 0.0334~ - 0.536~ + 0.474e - 1 . 1  78ac + 0 . 0 3 7 3 ~ ~  

CWbiPY)3l2 + 

M.1.c.t. 
A 2(a1 +u2) -0.0179 + 0.135~ 0.577~ 
A,(e-+e) 

E( (>+a2) -0.00072 - 0.369d - 2.06e 0.851d - 0.0757e 

0.018 - 1.044d + 0.0414bd + 0.0186e -0.0157 - 1.134d + 0.0356e + 2.06 - 0.01576d + 0.0157be 
E(ai+e) 

€( c.-+e) -0.0134 + 0.364d - 2.06e + 0.01346e -0.77d 

0.0127 - 0.379~ + 0.02846~ -0.0111 - 1.4146 + 0 . 7 3 ~  + 0.02226~ 

L.c.(x-+x*) 
A 2 ( 0 1 + 0 2 )  0.529 + 0.0179f 0.577 
A z(e-+e) 
E(u ,+4  

€( r+e) 0.364 + 0.0134g -0.770 

1.044 - 0.018g + 0.04146 
-0.379 - 0.0127 + 0.02846 

-1.134 + 0.001 57g - 0.01576 - 2.0bg 
0.73 - 0.01 1 1  f + 0.02226 + 1.4146f 

a-4 -0.369 + O.Oo0 72g 0.851 

M.c.(d+d) 

E( r-w) 
A 2(e-+e) 0.0180 - 1.044uc 

E(u 1 - 4  0.0127~ - 0 . 3 9 7 ~ ~  2.0 + 0.01 1 la - 0.0313~ + 0 . 7 3 ~ ~  
-0.134~ + 0 . 3 4 6 ~ ~  - 2.06ue - 2.0 - 0.0157~ + 0.0157e - 0 . 7 7 ~ ~  

2.828 - 0.0157~ - 0.222~ + 0.222e - 1 . 1 3 4 ~ ~  + 0.356ae 

The coefficients a-g are defined in equation (5 ) .  First-order perturbation: b = e, d = 42, c = g, d = J 

reduced magnetic moments are considerably smaller. Trans- 
formation of these reduced orbital matrix elements to the m.0. 
basis given in equation (3) and further to state matrix elements 
using the relationships given in Table 3 is straightforward. The 
expressions of spin-allowed state matrix elements for the electric 
dipole length and the magnetic transition moments for the three 
m.c., five m.l.c.t., and five I.c. (n+n*) transitions are given in 
Table 4. These formulae can be used to calculate the relative 
intensities of the absorption and c.d. bands of these transitions 
for any set of mixing parameters a, b, and c. 

Discussion 
Compurison M‘ith the Experimental Spectra-Comparison 

of the experimental spectra with the result of our calculations 
was made using a ‘stick diagram’. The positions and intensities 
of the absorption and c.d. bands are compiled in Table 5 and 
compared with the experimental spectra in Figure 3(a) and (b). 
The positions of the lines are obtained by the following pro- 
cedure. The trigonal splittings of the m.l.c.t., I.c. (n+n*), and 
m.c. bands are taken from the results of our earlier MSXx 
calculation. O Using this model, interelectronic repulsion is 
statistically averaged within a configuration. Therefore the 
states A 2  and E originating from the same orbital excitation are 
degenerated. More detailed calculations on the m.c. and m.1.c.t. 

excited states showed that one of these two states ( E )  is always 
lower in energy. The splitting is estimated to decrease with 
increased delocalization of the electrons, i.e. in the order m.c., 
m.l.c.t., I.c. states. The barycentres of the three groups of bands 
were estimated from the spectra; the m.1.c.t. and I.c. transitions 
are well localized. Of the m.c. transitions, only one is observed in 
the spectra of the [FeL,]” complex. This transition was 
tentatively assigned to a shoulder at the low-energy side of the 
m.1.c.t. transition and to the additional peak at the low-energy 
end of the c.d. spectrum.’.15 In case of [RuL,I2+ this transition 
is shifted to considerably higher energy due to the larger crystal- 
field splitting of second-row transition metal ions. Therefore the 
corresponding absorption band is not observed. I t  is buried 
under the strong m.1.c.t. and I.c. absorptions. 

Qualitative inspection of Figure 3 shows that the corres- 
pondence between measured and calculated intensities is in 
general good within the group of m.1.c.t. and 1.c. transitions. The 
rotational strength of the c.d. bands due to m.1.c.t. transitions is 
however too small compared to the I.c. transitions (note the 
factor of 10 in the stick diagram). The reason for this might be 
the abbreviation of the ligand x system, which surely has a 
considerable influence on the n-m* transition moments and 
therefore disturbs them to a greater extent than the metal- 
centred ones. Such a n  imbalance will be shown mainly by the 
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Figure 3 (a)  Absorption and c.d. spectra of A-[Fe(bipy),]'+ compared with the calculated stick diagram ( calculated rotational strength, 100). (6) 
Absorption and c.d. spectra of A-[Ru(bipy),]'+ compared with the calculated stick diagram ( calculated rotational strength, 100) 

Table 5. Band positions with calculated relative intensities ( I )  and rotational strengths ( R )  for [FeL3I2' and [RuLJ2+ (L = NH=CH-CH=NH) 

10-3~/cm-' iCalc. K a l e .  

1.37 x 1.05 x lO-* 
18.0 8.39 x lO-' 2.60 x l k 3  
18.0 5.09 x lo-'' 6.42 x 
18.4 2.74 x 10-4 -9.55 x 
20.2 1.60 x 10-4 -2.19 x 
20.9 8.70 x 10-' - 1.25 x 
23.6 9.46 x lo-* 1.67 x lW3 
23.6 1.67 x lC4  2.35 x l e 3  
33 2.72 x lo-' -6.28 x 10-' 

34.6 1.08 1.18 

41.1 2.83 x 10-' 3.05 x 10-' 

34.6 2.65 x 10-' -5.61 x 10-' 

39.7 2.80 x 10-' -5.51 x 10-' 

1 0 - 3 ~ / ~ m - 1  icelc. Rcalc.  

1.32 x lo-* 3.25 x lo4 
28.0 9.29 x lO-' 2.72 x 
28.0 2.86 x l C 9  1.53 x 10-4 
19.2 1.80 x 10-3 -2.56 x 10-4 
21.0 1.48 x 10-3 -5.93 x 10-3 
21.7 8.28 x 10-' -1.57 x lW3 
23.8 1.05 x 10-' 1.85 x lW3 
23.8 5.67 x 10-4 3.91 x l C 3  
34.5 3.07 x 10-' -6.88 x 10-' 

35.9 1.19 1.29 
40.0 3.10 x 10-' 3.36 x 10-' 
41.4 3.06 x 10-' -6.57 x 10-' 

35.9 2.95 x 10-' -6.22 x 10-' 

rotational strength of the m.1.c.t. transitions, which are com- 
posed of metal-centred magnetic moments and x+x* electric 
dipole moments (see below). 

There are in a first-order perturbation model (Table 4) three 
adjustable mixing parameters (a, b, c)  which determine the line 
intensities. We estimated these parameters as a = 3 x lW3,  b = 
1 x l@',  and c = 1 x by trial and error to obtain a 
satisfactory agreement between calculation and experiment 
(Figure 3). In principle all parameters, the line positions and the 
mixing coefficients, could be determined by curve fitting if the 
experimental spectra were sufficiently well resolved to allow a 
unique deconvolution. The values of the adjustable parameters 
indicate that the mixing between the occupied t,. orbitals and 
the empty x* orbitals of the ligands given by b is dominant. This 
is in agreement with the previous work of Day and Sanders,13 
and more recently Ceulemans and Vanquickenborne,' who 

used a charge-transfer model to explain the absorption 
spectrum. This mixing can also be described as back-bonding, 
characterizing many of the chemical properties of these 
complexes. The mixing between the t2* and the occupied x 
orbitals has to be significantly smaller, as clearly indicated by 
the experiment. If this is not the case, x+x* 'borrowing' 
becomes the most important mechanism for the intensity of the 
m.1.c.t. bands. Under these conditions the axial and planar 
polarized absorptions would be of comparable intensity, in 
contrast to the experimental observations. The reason for the 
smaller tzy-x  mixing must be due to a reduced overlap since 
the energy difference is comparable to the one between t29 and 
n*, as shown in Figure 1. The mixing between eg(do) and x*  
orbitals is very small. This is reasonable as this interaction is 
forbidden in 0, symmetry and mediated only by descent in 
symmetry. 
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The electric dipole moments of the m.c. d-d transitions are as 
expected very small. There is within our model only one 
transition to the E(e+e) which can efficiently borrow intensity 
from the transfer term and a n+n* transition through the 
mixing between e,(do) and x* orbitals. The magnetic dipole 
transition moments of all the three &d transitions are large. 
This situation gives rise to one relatively intense c.d. band due to 
a d-d transition E(e-e)(2). This band is clearly observed as 
an additional feature at low energy in the c.d. spectrum of 
[Fe( bipy )+I + (bipy = 2,2’-bipyridyl). The single-crystal c.d. 
spectrum shows, that in accordance with our prediction, this 
band is polarized perpendicular to the three-fold axes. In 
[Ru(bipy),]* +, where the ligand-field splitting is considerably 
larger, this band appears at higher energy. It is tentatively 
assigned to a shoulder between the m.1.c.t. and the I.c. transitions 
in the c.d. spectrum of [Ru(bipy)J2+, which is absent in the 
spectrum of [Fe(bipy),13+. There are other mechanisms giving 
intensities to the forbidden d-d transitions such as vibronic 
coupling and d-p orbital mixing, which are not considered in 
our description. However, the fact that, in agreement with our 
model, only one of these transitions carries significant rotational 
strength, indicates that other contributions than the transfer 
term and n+x* borrowing are of minor importance. 

Of the five allowed m.1.c.t. transitions from the t2, sub-shell to 
the x* orbitals only two, E(e+a,)(4) and E(e+e)(S), are 
predicted to carry considerable intensities. Both are polarized 
perpendicular to the three-fold axes (E). Hence it is reasonable 
to assign the two main features in the m.1.c.t. spectrum, the band 
at 21.55 x lo3 cm-’ and the shoulder at 23.36 x lo3 cm-’ for 
[Ru(bipy),]’+ l 6  and the bands at 18.62 x lo3 cm-’ and 
20.28 x lo3 cm-’ for [Fe(bipy),12+ l 7  to these transitions 
respectively. This result agrees with experimental observation. 
All the intense m.1.c.t. bands are perpendicularly p~larized,’~.’ 
in agreement with the results obtained by Day and Sanders l 3  

and later by Ceulemans and Vanqui~kenborne,~ applying 
charge-transfer (c.t.) theory. The dominant contribution to the 
electric dipole moment is of course the transfer term. The other 
three m.1.c.t. transitions gain intensity through n4n* 
borrowing or the so-called ‘contact term’. These mechanisms 
are in general not included in the c.t. model. 

No detailed information can therefore be obtained about the 
intensities of the above bands within the c.t. model. Our 
calculation shows that these borrowing mechanisms are 
considerably less effective than the transfer term. Hence the 
electric dipole moments are ca. 10 times smaller and their 
absorption intensity is about two orders of magnitude smaller 
(note the logarithmic scale in Figure 3). The magnetic dipole 
moments are dominated by the d-d contributions. Again, only 
two of the m.1.c.t. transitions, A2(e+e) and E(a,+e), can couple 
with the d-d transition moments. The other three transitions 
borrow magnetic moments from the x-m* transition. This is 
less effective and their magnetic transition moments are ca. 10’ 
times smaller. We can therefore distinguish three types of m.1.c.t. 
transitions: (i) the two mentioned above, E,(e+a2)(4) and 
E2(e-+e)(5), with a large electric dipole moment and hence with 
strong absorption, and having a small magnetic dipole moment; 
(ii) the A2(e--te)(3) and E(a1+e)(3) transitions, with a large 
magnetic and a small electric dipole moment, hence showing 
strong c.d. bands; (iii) one A2(al+a2)(2) transition which 
carries neither a large electric nor a large magnetic dipole 
moment. This result is in agreement with the conclusion of 
Ferguson et a/.’ drawn from their single-crystal c.d. spectra, 
stating that the intense bands which are observed in the 
absorption and c.d. spectra are due to different transitions. 

There are five x+x* transitions, which carry all comparable 
intensities in the absorption spectrum and in the c.d. spectrum. 
The sign of the rotational strength is positive for those polarized 
parallel to the C,  axes ( a 2 )  and negative for those 

perpendicular (e) in the case of complexes with the absolute 
configuration A. This is in agreement with the predictions made 
by exciton theory l 4  based on three independent chromophores. 
The two transitions of lowest energy correspond to orbital 
excitations e+a2 and e d e .  These two excitations are considered 
in exciton theory as the origin for a characteristic doublet with 
different signs, which allow determination of the absolute 
configuration of the complexes. l 4  Our calculation shows that, in 
the e+e excitation, which gives rise to two transitions 
A2(e-w)(4) and E(e+e)(7), the A2(e+e)(4) component has 
dominant rotational strength. Therefore, the two observed 
bands of lowest intensity in the x+n* region are polarized 
perpendicular and parallel in order of increasing energy, which 
leads to the characteristic (-),(+) doublet observed in the 
x+x* region of the c.d. spectrum of the A-[ML3J2+ complexes. 

Appendix 
Invariance of the Rotational Strength with Respect to Co- 

ordinate Transformation.-Since we use dipole lengths rather 
than dipole velocities in equation (2) we have to show that 
the rotational strength is origin-independent. Suppose the co- 
ordinate transformation between the system (x,y,z) and (x’,y’,z’) 
is defined as in equation (Al),  where 7 and 7‘ are vectors in 

(x,y,z) and (x’,y’,z’) respectively; To is the vector representing 
the translation of origin, and M is a unitary matrix. Then the 
scalar product (A171B) (B17 x V I A ) ,  which determines the 
rotational strength, is transformed as in equation (A2). Since 

unitary transformations leave the scalar product invariant, the 
first and second terms of equation (14) are, respectively, written 
as in expressions (A3) and (A4) where To = fl7& Mt being the 

conjugate matrix of M .  The second term is a so-called ‘mixed 
product’ measuring the volume of the parallelepiped spanned by 
the three vectors (A171B),7,, and (BlV’lA). This term vanishes if 
any of the three vectors are collinear. If (A1 and IB) are 

Eigenfunctions of the Hamiltonian, (AlVflB) = - T E  (AIJIB) 

where m/h2 is a constant and E is the transition energy. 
However, for approximate wavefunctions (as those employed 
here) this equation does not generally hold. Nevertheless, in the 
present case, in which molecules have D ,  symmetry, it can be 
proven to vanish by symmetry considerations. Clearly the 
matrix elements of P and 7 connecting the ground state of 
symmetry A with any of the excited states are of the form given 
below. Thus (A171B) and (BIVIA) are parallel also for 
approximate wavefunctions, provided they are bases of 

m 
h 

( A l l V l A l )  = (O,O,O) 
(AI lVlA,)  = (O,O,. . .) 
( A  ,lVIEe) = (0, . . .,o) 
(A, lVlE&) = (. . .,O,O) 

( ~ 1 1 ~ 1 4 )  = (O,O,O) 
(A’171A2) = (O,O, * .  .) 
( A  , /7p)  = (0, .  . .,o) 
( A  ,171EE) = (. . .,O,O) 

irreducible representations. Hence the second term, equation 
(A4), vanishes for any To and the rotational strength can be said 
to be invariant under any co-ordinate transformation. 
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